The elegance and simplicity of equations like Einstein's E=mc² and Newton's F=ma is indeed remarkable, but it's important to understand that these equations were not randomly created by some divine mathematician or dramatist. They were formulated based on careful observations, empirical evidence, and mathematical reasoning.
In the case of Einstein's equation E=mc², it is a consequence of his theory of special relativity, which revolutionized our understanding of space, time, and energy. Einstein developed this equation by combining the principles of special relativity, which showed that energy and mass are interchangeable, with the mathematical framework of his theory. The equation expresses the equivalence between energy (E) and mass (m) multiplied by the square of the speed of light (c²).
Similarly, Newton's equation F=ma is derived from his laws of motion, which describe how objects behave under the influence of forces. Newton formulated these laws based on careful observations and experiments. The equation F=ma relates force (F) to the mass of an object (m) and the acceleration (a) it experiences when acted upon by a force.
The reason these equations appear elegant and concise is that they capture fundamental relationships in nature. Scientists and mathematicians strive for simplicity and elegance when formulating theories and equations because it often indicates a deep underlying principle or symmetry in the natural world. However, it's worth noting that behind these seemingly simple equations lie complex theories and a wealth of mathematical and conceptual frameworks.
It's also important to remember that there are many other equations and mathematical expressions that describe different phenomena in the universe, and they may not always appear as elegant or simple. The simplicity and elegance of specific equations, like E=mc² and F=ma, is a result of the specific circumstances and principles they represent.