+64 votes
in Classical Mechanics by
edited by

Your answer

Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
+5 votes
by

The seeming incompatibility between Newtonian mechanics and quantum mechanics arises from the fact that these two theories describe the behavior of physical systems in different domains. Newtonian mechanics, also known as classical mechanics, is highly successful in describing the motion of macroscopic objects, such as everyday objects and astronomical bodies. On the other hand, quantum mechanics provides an accurate framework for understanding the behavior of particles at the microscopic scale, including atoms, electrons, and photons.

Here are a few key points that help reconcile the apparent incompatibility between these two theories:

  1. Domain of applicability: Newtonian mechanics is an excellent approximation for macroscopic objects with large masses and speeds much slower than the speed of light. Quantum mechanics, on the other hand, is essential for understanding the behavior of particles at the atomic and subatomic scale, where wave-particle duality and quantum uncertainty become significant.

  2. Quantum superposition and wave-particle duality: Quantum mechanics introduces the concept of superposition, where particles can exist in multiple states simultaneously. This is in contrast to classical mechanics, where objects have well-defined positions and velocities. Additionally, quantum mechanics also exhibits wave-particle duality, meaning that particles can behave as both particles and waves, depending on the experimental setup.

  3. Statistical nature of quantum mechanics: Quantum mechanics describes systems probabilistically through wavefunctions and their associated probabilities. The behavior of individual particles is inherently uncertain, and it is only possible to predict the probabilities of different outcomes. However, when dealing with a large number of particles, these probabilities converge to classical predictions, recovering the deterministic behavior described by Newtonian mechanics.

  4. Correspondence principle: The correspondence principle states that the predictions of quantum mechanics must match those of classical mechanics in the limit of large scales. As the size and energies of systems increase, the probabilistic nature of quantum mechanics averages out, and classical mechanics becomes a valid approximation.

  5. Quantum field theory: Quantum field theory provides a framework that combines quantum mechanics and special relativity. It extends quantum mechanics to fields, such as the electromagnetic field, and treats particles as excitations of these fields. Quantum field theory unifies quantum mechanics and relativity and has been successful in describing fundamental forces.

In summary, while there may be apparent conflicts between classical mechanics and quantum mechanics, they are complementary theories that operate in different domains and provide accurate descriptions of physical phenomena at different scales. Quantum mechanics extends our understanding beyond the limitations of classical mechanics, allowing us to explore the behavior of particles and systems at the microscopic level.

Welcome to Physicsgurus Q&A, where you can ask questions and receive answers from other members of the community.
...