To determine the time it takes for the ball to reach the highest point in its flight, we can use the kinematic equation for vertical motion:
vf=vi+atv_f = v_i + atvf=vi+at
Where:
- vfv_fvf is the final velocity (0 m/s at the highest point, as the ball momentarily stops before descending).
- viv_ivi is the initial velocity (29 m/s in the upward direction).
- aaa is the acceleration due to gravity (-10 m/s² since it acts downward).
- ttt is the time.
Since the final velocity is 0 m/s, we can rearrange the equation to solve for ttt:
0=29−10t0 = 29 - 10t0=29−10t
Simplifying further:
10t=2910t = 2910t=29
Dividing both sides by 10:
t=2910=2.9 secondst = frac{29}{10} = 2.9 ext{ seconds}t=1029=2.9 seconds
Therefore, it takes approximately 2.9 seconds for the ball to reach the highest point in its flight.